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Newton's law of resistance which, as is well-known /4/, works much better for convex bodies 
than for concave ones. One can expect particularly large deviations from this theory in 
bodies with "inner positive" corners, such as the corner at the point d in configurations 
with rear vertical segments. The first way to guarantee a better approximation to reality 
is to introduce an additional restriction on the radius of curvature of the admissible con- 
tours: R>r, where r>O is some given constant. When that is done the corner at d 

is rounded off to radius r. Another method would be to introduce point forces at "positive" 
corners. The question of modifying 
additional anaysis. 

the solution in the context of this approach requires 

The author is indebted to O.A. Gil'man, who drew attention to the problem, and to 
N.I. Tillyayeva and V.A. Vostretsov for their assistance. 
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SELFSIMILAR SOLUTIONS DESCRIBING THERMAL CAPILLARY FLOWS IN VISCOUS LAYERS* 

V.A. BATYSHCHEV 

Thermal capillary flows in thin layers, brought about by non-uniform 
heating of the free boundary, are investigated at high Marangoni 
numbers. Selfsimilar solutions of the non-linear boundary-layer 
equations are constructed under conditions of axial symmetry, and 
asymptotic formulae for the solutions are found for small and large 
values of the thickness of the layer. It is shown that the selfsimilar 
solutions may not be unique when the parameters of the problem have 
certain values. The buoyancy forces in an inhomogeneous fluid lead to 
the reinforcement or suppression of the flows or to the formation of 
reverse flows close to the free boundary. Selfsimilar solutions when 
there are thermal capillary effects present have been studied in /l-5/. 

1. The non-linear axially-symmetric problem of the stationary thermal capillary motion 
of an incompressible fluid in a thin layer, bounded by a free surface p and a solid wall S 
is considered at low coefficients of viscosity v--to and thermal diffusivity X+-O when 
there is a zero temperature gradient on the free boundary: 

(v, V)v = --p-'Vp + YAV + g 

vVT = xAT, divv = 0 

(1.1) 

P = 2vnnn + u (k, + h) + P*, (x7 Y, 4 E r 

2vp mn - (nrIn)l = v,o, vn = 0, (z, y, 2) E r 

T = Tr, (5, y, z) E r; v = T - Ts = 0, (2, y, z) E S 

(1.2) 
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Here v = (ur, uy, UJ is the velocity vector, T is the temperature, g = -gel, e, = (0, 0, 
1) is the unit vector along the z-axis, g is the acceleration due to gravity, n is the unit 
vector of the external normal to the free boundary p, II is the rate of deformation tensor, 
k, and k, are the principal curvatures of the surface I', p* and Tr are the specified 
temperature and pressure on r,Ts is the temperature of the wall, Vr = V - (n, V)n is the 
gradient along r and U is the surface tension coefficient which is assumed to be a linear 
function of temperature: u = crO - le I (T - T,), where Uo, UT and T, are known constants 
and Ur < 0. 

When the free boundary is non-uniformly heated, tangential surface stresses arise along 
r which, when Y, x-+0, lead to the formation of non-linear boundary layers close to the 
boundaries of the domain as a consequence of the thermocapillary effect. 

We shall reduce problem (1.11, (1.2) to dimensionless form by introducing the character- 
istic scales of length L, velocity U = (1 ur Iz_4~Lp-2~-1)1/~ and pressure P = u&L, where A is 
the characteristic scale of the temperature gradient. We also introduce a small parameter 
s zz M-G, where M = 1 UT ) L2Ap-‘v-2 is the Marangoni number. We note that small values of 
v or large temperature gradients correspond to small values of E. It was shown in /5/ that 
the orders of the velocity and the thickness of the boundary layer close to the free boundary 
are equal to O(U) and O(E) respectively. 

Next, we shall consider thermocapillary flows in thin layers with a thickness of the 
order of e. We note that flows in layers with a thickness e which are bounded by two solid 
walls have been considered in /6/ and the pressure gradient was determined when solving the 
Prandtl equations. 

Asymptotic expansions of the solution of problem (l.l), (1.2) are constructed in the 
form 

v - h, + ehl + . ., p’ - hq, + Ehq, + . 
T - O0 + ee, + . . ., 5 - e& + e2C2 f. . ., (e -+ 0). p’ = (p + pgz)lP 

(1.3) 

Here, h = IUT ) AL/u, is the capillary constant and z = 5(x, y) is the equation of 
the free boundary. 

2. A boundary-value problem for determining the principal terms of the asymptotic forms 
(1.3) is obtained by applying a second iterative process using the Vishik-Lyusternik method 
/7/ to system (l.I), (1.2). The local orthogonal coordinates 5, cp and 0, where 5 is the 
distance of the point N(x, y, z) to the surface S and cp and 9 are the curvilinear coordi- 
nates on Sof the foot of the normal dropped from a point N. Let &, Aek and hEk be the 
components of a vector hk in the local coordinates. We substitute (1.3) into (l.l), (1.2) 
and introduce the elongating transformation E = ES. By equating the coefficients of E-I and 
E to zero, we find that Ato = 0 and &,, he0 and &, satisfy the Prandtl boundary-layer 
equations. 

We will now present these equations in the axially-symmetric case by assuming that he0 = 
0, the vector v is independent of the coordinate 0 and cp is the length of an arc of the 
surface of rotation S in the meridional cross-section: 

hw++&q-- ahw 2g_~ a90 (2.1) 

a% 
as = 0, 

a L (rh,,) + x(+,) = 0 
a9 

ohm __ ao 
as---T’ h,n = O(s = cl(m)), h, = h&l = 0 (S = 0) 

Here, r (9) is the distance from a point on the surface S to the axis of rotation 2. 
We supplement system (2.1) with an equation for determining the function 51 (cp), using 

dynamic boundary conditions on the free boundary. We shall consider the case when the 
capillary constant is of the order of E', that is, h = h$. When account is taken of the 
properties of axial symmetry, the boundary conditions (1.2) for the normal stresses now lead 
to the equations 

&q, = B5, cos (ne,) - C1 (k,2 + k2') - A& (2.2) 

Here, A is the Laplace - Beltrami operator on the surface r and B = pgL'iU, is the Bond 
number. 

In the case when h<e2, the surface s = cl(cp) satisfies Eq.(2.2), when h, = 0, 
which is integrated separately from system (2.1). The case when A> E' is not considered. 

3. Let us construct the selfsimilar solutions of system (2.1), (2.2) taking into account 
the axial symmetry subject to the condition that the gradient of the surface tension depends 
solely on the coordinate cp exponentially duldq = t'p*. Let us now introduce the flow func- 
tion by means of the relationships hq, = 3$/8s, h@, = -r-la (np)/&p and use the notation tl= 
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s 1 qz I%cpW/J~ We represent the functions Ip and q. in the form 

I# = IZl'l.m(n+n)hr (a), Q0 = 3q IT ~-%cp(an+rVs/(4n + 2) 

For the function F(q) from system iZ.l), we derive the equation 

3F'" + (n + 5) FF” - (2~ + I) F’= = 3q (3.1) 

Fig.1 Fig.2 

Fig.3 Fig.4 

Let us now consider a layer of constant thickness h = const. A selfsimilar solution 
exists when n = 1. Placing the origin of the coordinate system on the free boundary, we 
write the boundary conditions for Eq.(3.1) as 

F (0) = F (h) = F’ (Ia) = 0, F” (0) = -1 (3.2) 

We note that one of the conditions (3.2) serves to determine the unknown constant q 
which is proportional to the pressure in the layer. When F”(0) = -1, the tangential 
stresses on the free surface are directed towards an increase in the coordinate cp while, 
when F"(O)= 1, they are directed in the opposite direction. 

When n = 1, problem (3.11, (3.2) was integrated numerically for various h. Curve 2 in 
Fig.1 shows the dependence g(h). For small k, by expanding the function F(n) in a series 
in powers of n, we find the asymptotic forms q = 1.5 h-l[l + o(1)] when h-0. When h = 0.5, 
the three significant figures are the same in the case of the asymptotic and numerical values 
of q. Curve 3 in Fig.2 shows the velocity profile when h = 1. The greatest velocity value 
is reached on the free boundary where the direction of the velocity is the same as that of 
the tangential stress. A counterflow zone with a maximum velocity which is approximately 
three times smaller than the velocity on the free boundary vr arises close to the solid wall, 
As the thickness of the layer increases, the value of vr and the presurface flow domain, 
where hqo >O become smaller. Curve 4 in Fig.2 shows the velocity profile when h = 10. 
The dependence of F'(0) on k is represented by curve 2 in Fig.3. 

The asymptotic forms of the solution of problem (3.1), (3.2) are readily constructed 
when h+ co. We will present the principal terms of these asymptotic forms 
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Here no = O(W) and the function G(t) is determined from the boundary-value problem 

G'" + 2GG" - G'$ = 0; G (0) zz G' (m) = 0, G" (0) = --1 

Numerical calculation shows that G(m)= 0.7125 and G' (0) = 0.8972. 
The boundary-value problem (3.11, (3.2) was also solved numerically subject to the 

condition F"(0) = 1. A graph of the dependence g(h) is shown by curve 7 in Fig.1. We note 
that asymptotic formulae are only constructed when h-to: IJ - -1.5 /z-l, P - -0.5 hq + O,5h$ - 
0.25qW1. 

In a layer with two free boundaries, the function F(q) satisfies Eq.(3.11 when n=l 
with the boundary conditions F (0) = F (h) = F” (h) = 0, F” (0) = y (y = &I). The dependence q(h) 
was calculated numerically and is shown graphically in Fig.1 where curves 3 and 6 correspond 
to values of y equal to -1 and 1. The asymptotic formulae 9~ --y/h and F’ (0) x $3 can 
be found when h- 0. We note that, unlike in the case of a layer with a solid boundary, 
the function F'(q) is monotonic with a maximum on the free boundary. 

Let us now construct the selfsimilar solutions in a thin layer lying on a horizontal 
solid surface when the free boundary has a point of contact with the solid wall at 'p = 0. 
After linearization with respect to cl, cl' and tlV boundary condition (2.2) is reduced to 
the form 

k&f, = B& - 51" - &'ir (3.3) 

We will now consider the case when the term Bcl can be neglected. This is realized 
if the capillary forces exceed the gravitational forces, such as under conditions of weight- 
lessness (B = 0), for example. A selfsimilar solution only exists when n = -715. By 
writing the surface tension coefficient in the form CI = (Jo - 6.25 q+, we find the solution 

9 = _-cp'la~~_C%~ (n). n = 1 -_ srp-'/Q?-'z'i*, r;, = bz-'i$" 

The function F(n) is determined from the boundary-value problem 

5F"' + bJ (6FF" + 3F'7 = kzbz (3.4) 

F (0) = F (1) = F' (1) = 0, F” (0) = -1 

The parameter b is proportional to the pressure gradient and has to be determined. The 
constant a is known: a = 96&,-'t-%'125. 

The boundary-value problem (3.4) was integrated numerically using the Runge-Kutta method. 
The dependence b(a) is represented by the solid lines in Fig.4. Two solutions were 
calculated numerically at fixed a. For one of these b>O and, for the second, b < 0. 
The asymptotic formulae for these solutions were constructed for large a by expanding the 

function F(q) in a power series in q. We report the formula b;=l,l/f%t (a-+~). 
We note that, when a = 1, the three significant figures are the same in the case of the 

numerical and asymptotic values. When a+@, the asymptotic forms of the solution of 
problem (3.4) were constructed for positive b: 

The function G(t), describing the flow in the presurface layer, is determined from the 
boundary-value problem 

SG"' + 6GG" + 36" = 0; G (0) = G'(w) = 0, G" (0) = -1 

It was found numerically that G'(0) = 1.824 and G (m) = 1.543. 
As a becomes smaller, the velocity on the free boundary and the domain of presurface 

flow, where A**> 0, are reduced while there is a simultaneous increase in the thickness of 
the counterflow zone. The velocity profile when cc = 10-3 passes close to curve 4 in Fig.2. 

In the neighbourhood of the point of contact of the boundaries of the domain ((P* 0) 
the solution which has been obtained is invalid since the asymptotic expansion has a more 
complex form here than the form of (1.3) and the equations of the thin layer are the same as 
the complete Navier-Stokes system. An asymptotic investigation of the Navier-Stokes system 
close to the line of contact has been reported in /8, 9f. 

With the boundary condition F”(0) = 1, a solution of problem (3.4) is obtained by 
replacing the variables F, a and b by -F, -a and -b which has been considered above. 

Let us now construct the selfsimilar solutions subject to the condition that the 
capillary forces in (3.3) can be neglected. We then write the condition on the free boundary 
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in the form h,q, = B&. A selfsimilar solution now exists when n = 415 and this solution 
is written in the form I$ = -cpJ~~bWF (T$, where rl = 1 _ scp-'l~~'l,b-' and c1 = bz-‘i$la. The 
function F satisfies the boundary-value problem 

Here, a = &,-'~-"I~ 
The solution F(q) 

is shown in Fig.4 by the 
a+oc. The asymptotic 
small a. 

5F” + b3 (8FF” - F2) = 5abz 

F (0) = F (1) = F’ (1) = 0, F” (0) = --1 

is a specified parameter and the constant b is to be determined. 
was calculated numerically for various a and the dependence _ b (a) 
broken lines. We present the asymptotic form bzi-1/1.5a-’ when 
formula b.z00.5574a-‘13 (a-to) was found for values of b>O at 

4. Let us now consider the case when a thermal flux xdTl&t = Q is specified on the 
free boundary. Now, in order to satisfy the boundary condition for the tangential stress, 
it is necessary to calculate the temperature distribution within the layer. 

We will derive the selfsimilar solution in the axially-symmetric case of a layer of 
constant height h when Q = Qo$, T = @3(s) and I# = cpF (s). The functions F(s) and 9 (s) 
are determined from the boundary-value problem 

F” + 2FF” - F” = q (h), 0” + 2Pr (WF - OF’) = 0 

F (0) = 0, F” (0) = -20 (0), 8’ (0) = --1/Pr 

F (h) = F’ (h) = 0 (h) = 0 

(4.1) 

Here, account has been taken of the fact that the quantity QJx, where Q, is the 
thermal flux scale, x is the thermal conductivity and Pr is the Prandtl number, was adopted 
as the characteristic temperature scale. 

Problem (4.1) was investigated numerically for different values of the parameters h and 
Pr. Curves I,4 and 5 in Fig.1 represent the dependence of the pressure gradient on the 
thickness of the layer q(h) at Prandtl numbers equal to 1, 7 and 50 respectively. We note 
that, unlike the problem when the temperature of the free boundary is specified (e” (0) = --I), 
the function q(h) has a finite value when h = 0. 

We present the asymptotic formula for small h 

q-3/m F- ‘/* (Vs - 2hs2 + s3)/Jf% 

e - (h - S)/vE+ ‘/,hv (h + 0) 

Curves 7, 3 and 4 in Fig.3 show the dependence of the velocity on the free boundary F(0) 
on the thickness of the layer at Prandtl numbers of 1, 7 and 50 respectively. As h becomes 
larger, the velocity of the fluid increases and tends to a finite limit as h-tot. A pre- 
surface flow occurs in the domain close to the free boundary which is in the same direction 
as the tangential stresses together with a weaker counterflow zone close to the wall. The 
temperature on the free boundary decreases as the Prandtl number increases and tends to zero 
as Pr-too. When h = 1, the temperature profiles are close to being linear for 1 &Pr< 50. 

5. Let us now consider the thermocapillary axially-symmetric flow in a layer of infinite 
depth with a specified gradient of the surface tension coefficient doi& s rep". Here cp is 
the length of an arc on the free boundary in the meridional cross-section measured from the 
axis of symmetry. Specifying the flow function 

II, = (p("+*)ls 1 z I’laF (q), IJ = s 1 r ~‘/r~(n-‘)/s 

for F(q), we derive Eq.(3.1) with the boundary conditions F (0) = F” (m) = 0 and F” (0) = &-I. 
The parameter q in (3.1) determines the amplitude of the pressure gradient in the external 
flow. 

We now introduce the amplitude of the velocity on the free boundary Ur = F’(O) and in 
the external flow U,= F’(m). The function F(q) was calculated numerically for various n. 
The dependence of the amplitude of the velocity lJn on U, when n = 0 is shown in Fig.5. 
Curve 1 corresponds to the case when F”(O)= -1 and curve 2 to the case when F” (0) = 1. 
Note that a single solution F(q) is obtained for each value when F”(0) = -1 whereas two 
solutions exist for certain U, when F”(0) = 1. 

We present the asymptotic formula for large positive U, 

ur=u,+-a=+... 
If”- 

cum-++ w) 
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Fig.5 

Here Q = G’(O), where G(n) is determined from the 
boundary-value problem 

3G"' + I) (n + 5)G" - (4n + 2) G' = 0 

G' (w) = G (0) = 0, G" (0) = _tl 

When n = 0, we find a = TO.7743 for F” (0) = &I. Curve 
2 in Fig.5 intersects the abscissa at U, = 1.084. The boundary- 
value problem for F(n) has two solutions close to this value. 
Note that the velocity profiles are monotonic in all cases. 
When the fluid is at rest (V, = 0) outside the boundary 
layer, no numerical solutions are found for F”(O)= 1, while, 
when F”(0) = -1, a single solution was calculated for which 

F’ (0) = 1.056. 

6. We will now consider the effect of buoyancy forces 
in a thin layer of an inhomogeneous fluid when there is a 
thermocapillary flow. The equations of motion are written in 
the Boussinesq approximation by replacing a term in the first 
equation of system (1.1) by the gravitational force gSTez, 
where 8 is the coefficient of thermal expansion. By consider- 
ing a planar problem we find that a selfsimilar solution only 
exists when ddldq = ~(p. By representing the solution in the 
form 

we derive the boundary-value problem for F(q) and 8 (n) 

F(d) + FF"' _ F’F” = h0, 0” + Pr (Fe’ - ZF’O) = 0 
F = 0, F” = -1, 0 = 1 (q = 0), F = F’ = 0 10 (q = h) 

(6.i) 

The parameter h takesaccount of the effect of buoyancy forces in the thin layer. The 
sign of li depends on the sign of the difference between the temperatures at the boundaries 
of the layer and h>O if the free boundary is heated more strongly than the solid lower 
boundary. 

Problem (6.1) was calculated numerically when h = 1 and Pr = 7. The velocity profiles 
for various h equal to lO,O, -15 and -30 are shown in Fig.2 (curves 1, 2, 5, and 6 respect- 
ively). When h>O, there is an increase in the velocity on the free boundary vr as h 
increases and, as in a homogeneous fluid, the direction of the velocity is the same as the 
direction of the tangential stresses. For negative values of h when 5, <I < 0 ($ ̂  -l(i), 
there is a retardation of the flow close to the free boundary. When h, < h < h, (h, =: -20) I 
the flow domain subdivides into three zones, in two of which, which are adjacent to the 
boundaries of the domain, the velocity is positive while a counterflow occurs in the middle 
zone as shown by curve 5 in Fig.2, for example. When h<h,, a reverse flow occurs close 
to the free boundary which is directed against the surface tangential forces and a counter- 
flow (curve 6 in Fig.2) is formed in the remaining part of the flow. 

Hence, buoyancy forces can lead to the reinforcement or attentuation of flows or to the 
formation of backward flows close to the free boundary. 
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SINGULARITIES IN FLOWS WITH A FREE BOUNDARY* 

A.S. SAVIN 

A method of determining the shape of the free surface of a planar 
stationary flow of a ponderable ideal fluid which flows around point 
hydrodynamic singularities is proposed. A Cauchy problem is formulated 
for finding the profile of such a flow. The self-induced motion of a 
point vortex under the free surface of an ideal ponderous fluid is 
considered. 

1. The equatCon of the profiZe of a capillary-gravitationa wave of smaZ1 amplitude on 
the surface of a stationary fZow. In the case of a stationary flow having point singularities, 
a method was proposed in /l/ for finding the shape of the free surface when it deviates 
slightly from the unperturbed position. The solution obtained by this method has the form 
of an improper integral with a variable limit. For example, in the case of the flow round 
a vortex of intensity J? located at a depth h by a flow having a velocity -V at positive 
infinity, the following expression /2/ can be obtained for the shape of the free surface: 

s (5) = --& 1 rcosvb+-~sinvcr-., & (_ +) 

m 

A still more complex integral representation for the function s(r) can be obtained 
by this method when account is taken of capillary effects /3/. 

Below, we obtain an ordinary differential equation which is satisfied by the function 

s (5) and we formulate a Cauchy problem for determining it. 
Let us consider a planar stationary flow with a velocity -V at z = m. Let its unper- 

turbed free surface coincide with the x-axis. Let us pick out the principal component of the 
flow by putting its complex potential equal to W = o - Vz, where 0 = cp + i$, 2 = 5 + iy. 
Linearized boundary conditions /3/ 

s (5) = (V/g) CPX (.? 0) + Ial(pg)l S" (x)7 9 (I, 0) = FLY (I) (1.1) 

(a is the surface tension and p is the density of the fluid) can be written in the form of a 
single condition for the complex velocity U (2) = w' (2) on the x-axis: 

Im@U" + iU' -vlJ) = 0 (p = ai(pVz)) (1.2) 

Here and subsequently, a derivative of a function with respect to its argument is 
indicated by a prime. 

If the flow passes around a unique singularity at the point .zo = -ti, the complex 
velocity has the form U(z) = C/(z + ih)" + g(z), n = 1,2, . . . . where the function g(z) is 
analytic over the whole of the domain of the flow. Following the method used in /l/, let us 
consider the function fJz)= glJ’+ iU’-VU which, as a consequence of condition (1.2), can 
be analytically extended according to the Schwartz principle into the upper half plane. Then, 

f (z) = BF,” + iF_’ - vF+, F+ = Cl(z + ih)” + (7/(z - ih)” 

in the whole of the complex plane. 
It can be directly verified that 
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